Electron-Attachment-Induced DNA Damage: Instantaneous Strand Breaks
详细信息    查看全文
文摘
Low energy electron-attachment-induced damage in DNA, where dissociation channels may involve multiple bonds including complex bond rearrangements and significant nuclear motions, is analyzed here. Quantum mechanics/molecular mechanics (QM/MM) calculations reveal how rearrangements of electron density after vertical electron attachment modulate the position and dynamics of the atomic nuclei in DNA. The nuclear motions involve the elongation of the P鈥揙 (P鈥?img src="/appl/literatum/publisher/achs/journals/content/jpcbfk/2013/jpcbfk.2013.117.issue-33/jp406320g/production/images/jp-2013-06320g_m001.gif" alt=""/> and P鈥?img src="/appl/literatum/publisher/achs/journals/content/jpcbfk/2013/jpcbfk.2013.117.issue-33/jp406320g/production/images/jp-2013-06320g_m002.gif" alt=""/>) and C鈥揅 (鈥?img src="/appl/literatum/publisher/achs/journals/content/jpcbfk/2013/jpcbfk.2013.117.issue-33/jp406320g/production/images/jp-2013-06320g_m004.gif" alt=""/> and 鈥?img src="/appl/literatum/publisher/achs/journals/content/jpcbfk/2013/jpcbfk.2013.117.issue-33/jp406320g/production/images/jp-2013-06320g_m006.gif" alt=""/>) bonds for which the acquired kinetic energy becomes high enough so that the neighboring 鈥?img src="/appl/literatum/publisher/achs/journals/content/jpcbfk/2013/jpcbfk.2013.117.issue-33/jp406320g/production/images/jp-2013-06320g_m008.gif" alt=""/> or 鈥?img src="/appl/literatum/publisher/achs/journals/content/jpcbfk/2013/jpcbfk.2013.117.issue-33/jp406320g/production/images/jp-2013-06320g_m010.gif" alt=""/> phosphodiester bond may break almost immediately. Such dynamic behavior should happen on a very short time scale, within 15鈥?0 fs, which is of the same order of magnitude as the time scale predicted for the excess electron to localize around the nucleobases. This result indicates that the C鈥揙 phosphodiester bonds can break before electron transfer from the backbone to the base.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700