DNA Lipoplexes: Formation of the Inverse Hexagonal Phase Observed by Coarse-Grained Molecular Dynamics Simulation
详细信息    查看全文
文摘
Mixtures of dsDNA and lipids, so-called lipoplexes, are widely used as less toxic alternatives to viral vectors in transfection studies. However, the transfection efficiency achieved by lipoplexes is significantly lower than that of viral vectors and is a barrier to their use in the clinic. There is now significant evidence suggesting that the molecular organization and structure (nanoarchitecture) of lipoplexes might correlate with biological activity. As a consequence, the ability to predict quantitatively the nanoarchitecture of new systems, and how these might change intracellularly, would be a major tool in the development of rational discovery strategies for more efficient lipoplex formulations. Here we report the use of a coarse-grain molecular dynamics simulation to predict the phases formed by two lipoplex systems: dsDNA−DOPE and dsDNA−DOPE−DOTAP. The predictions of the simulations show excellent agreement with experimental data from polarized light microscopy and small-angle X-ray diffraction (SAXS); the simulations predicted the formation of phases with d-spacings that were comparable to those measured by SAXS. More significantly, the simulations were able to reproduce for the first time the experimentally observed change from a fluid lamellar to an inverse hexagonal phase in the dsDNA−DOPE−DOTAP system as a function of changes in lipid composition. Our studies indicate that coarse-grain MD simulations could provide a powerful tool to understand, and hence design, new lipoplex systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700