Insights on the Facet Specific Adsorption of Amino Acids and Peptides toward Platinum
详细信息    查看全文
文摘
Engineering shape-controlled bionanomaterials requires comprehensive understanding of interactions between biomolecules and inorganic surfaces. We explore the origin of facet-selective binding of peptides adsorbed onto Pt(100) and Pt(111) crystallographic planes. Using molecular dynamics simulations, we show that upon adsorption the peptides adopt a predictable conformation. We compute the binding energies of the amino acids constituting two adhesion peptides for Pt, S7, and T7 and demonstrate that peptides鈥?surface recognition behavior that makes them unique among populations originates from differential adsorption of their building blocks. We find that the degree of peptide binding is mainly due to polar amino acids and the molecular architecture of the peptides close to the Pt facets. Our analysis is a first step in the prediction of enhanced affinity between inorganic materials and a peptides, toward the synthesis of novel nanomaterials with programmable shape, structure, and properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700