Synthesis, Photo-, and Electrochemistry of Ruthenium Bis(bipyridine) Complexes Comprising a N-heterocyclic Carbene Ligand
详细信息    查看全文
文摘
Analogues of [Ru(bpy)3]2+ were prepared in which one pyridine ligand site is substituted by a N-heterocyclic carbene (NHC) ligand, that is, either by an imidazolylidene with a variable wingtip group R (R = Me, 3a; R = Et, 3b; R = iPr, 3c), or by a benzimidazolylidene (Me wingtip group, 3d), or by a 1,2,3-triazolylidene (Me wingtip group, 3e). All complexes were characterized spectroscopically, photophysically, and electrochemically. An increase of the size of the wingtip groups from Me to Et or iPr groups distorts the octahedral geometry (NMR spectroscopy) and curtails the reversibility of the ruthenium oxidation. NHC ligands with methyl wingtip groups display reversible ruthenium oxidation at a potential that reflects the donor properties of the NHC ligand (triazolylidene > imidazolylidene > benzimidazolylidene). The most attractive properties were measured for the triazolylidene ruthenium complex 3e, featuring the smallest gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in the series (2.41 eV), a slightly red-shifted absorption profile, and reasonable excited-state lifetime (188 ns) when compared to [Ru(bpy)3]2+. These features demonstrate the potential utility of triazolylidene ruthenium complexes as photosensitizers for solar energy conversion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700