Probing Gas鈥揕iquid Interfacial Dynamics by Helium Evaporation from Hydrocarbon Liquids and Jet Fuels
详细信息    查看全文
文摘
We have monitored the speeds of evaporating helium atoms dissolved in liquid octane, isooctane, 1-methylnaphthalene, dodecane, squalane, ethylene glycol, and two jet fuels. In all cases, the average kinetic energies of the evaporating He atoms exceed the Maxwellian value of 2RT. The energies roughly track solvent surface tensions; this correlation may reflect the tighter packing and attractions of interfacial solvent molecules that restrict the gaps through which He atoms escape. Mixtures of dodecane, squalane, and 1-methylnaphthalene generate He evaporation energies that lie between the pure liquid values. We find, however, that He atoms evaporate from pure 1-methylnaphthalene with kinetic energies lower than expected based on its high surface tension, perhaps because the sideways packing of the aromatic rings provides more direct channels for the escaping He atoms. Additionally, He evaporates from two complex fuel mixtures, Jet A and JP-8, with nearly identical energies, implying that the extra additives in JP-8 do not segregate to the surface in ways that alter the dynamics of evaporation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700