Toward Self-Constructing Materials: A Systems Chemistry Approach
详细信息    查看全文
  • 作者:Nicolas Giuseppone
  • 刊名:Accounts of Chemical Research
  • 出版年:2012
  • 出版时间:December 18, 2012
  • 年:2012
  • 卷:45
  • 期:12
  • 页码:2178-2188
  • 全文大小:634K
  • 年卷期:v.45,no.12(December 18, 2012)
  • ISSN:1520-4898
文摘
To design the next generation of so-called 鈥渟mart鈥?materials, researchers will need to develop chemical systems that respond, adapt, and multitask. Because many of these features occur in living systems, we expect that such advanced artificial systems will be inspired by nature. In particular, these new materials should ultimately combine three key properties of life: metabolism, mutation, and self-replication.
In this Account, we discuss our endeavors toward the design of such advanced functional materials. First, we focus on dynamic molecular libraries. These molecular and supramolecular chemical systems are based on mixtures of reversibly interacting molecules that are coupled within networks of thermodynamic equilibria. We will explain how the superimposition of combinatorial networks at different length scales of structural organization can provide valuable hierarchical dynamics for producing complex functional systems. In particular, our experimental results highlight why these libraries are of interest for the design of responsive materials and how their functional properties can be modulated by various chemical and physical stimuli. Then, we introduce examples in which these dynamic combinatorial systems can be coupled to kinetic feedback loops to produce self-replicating pathways that amplify a selected component from the equilibrated libraries. Finally, we discuss the discovery of highly functional self-replicating supramolecular assemblies that can transfer an electric signal in space and time. We show how these wires can be directly incorporated within an electronic nanocircuit by self-organization and functional feedback loops.
Because the network topologies act as complex algorithms to process information, we present these systems in this order to provide context for their potential for extending the current generation of responsive materials. We propose a general description for a potential autonomous (self-constructing) material. Such a system should self-assemble among several possible molecular combinations in response to external information (input) and possibly self-replicate to amplify its structure. Ultimately, its functional response (output) can drive the self-assembly of the system and also serve a mechanism to transfer this initial information. Far from equilibrium, such synergistic processes could give rise to evolving, 鈥渋nformation gaining鈥?systems which become increasingly complex because internal self-organization rapidly reduces the potential energy surrounding the system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700