Multi-Stimuli-Responsive Charge-Transfer Hydrogel for Room-Temperature Organic Ferroelectric Thin-Film Devices
详细信息    查看全文
文摘
The possibility of designing programmable thin-film supramolecular structures with spontaneous polarization widens the utility of facile supramolecular chemistry. Although a range of low molecular mass molecular single crystals has been shown to exhibit ferroelectric polarization, demonstration of stimuli-responsive, thin-film, solution-processable supramolecular ferroelectric materials is rare. We introduce aromatic π-electron donor–acceptor molecular systems responsive to multiple stimuli that undergo supramolecular chiral mixed-stack charge-transfer (CT) coassembly through the tweezer-inclusion-sandwich process supported by hydrogen-bonding interactions. The structural synergy originating from hydrogen-bonding and chiral CT interactions resulted in the development of spontaneous unidirectional macroscopic polarization in the crystalline nanofibrous hydrogel network, under ambient conditions. Moreover, the tunability of these interactions with optical, mechanical, thermal, and electrical stimuli allowed the design of multistate thin-film memory devices. Our design strategy of the supramolecular motif is expected to help the development of new molecular engineering strategies for designing potentially useful smart multicomponent organic electronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700