Novel Antiviral C5-Substituted Pyrimidine Acyclic Nucleoside Phosphonates Selected as Human Thymidylate Kinase Substrates
详细信息    查看全文
文摘
Acyclic nucleoside phosphonates (ANPs) are at the cornerstone of DNA virus and retrovirus therapies. They reach their target, the viral DNA polymerase, after two phosphorylation steps catalyzed by cellular kinases. New pyrimidine ANPs have been synthesized with unsaturated acyclic side chains (prop-2-enyl-, but-2-enyl-, pent-2-enyl-) and different substituents at the C5 position of the uracil nucleobase. Several derivatives in the but-2-enyl- series 9d and 9e, with (E) but not with (Z) configuration, were efficient substrates for human thymidine monophosphate (TMP) kinase, but not for uridine monophosphate鈭抍ytosine monophosphate (UMP-CMP) kinase, which is in contrast to cidofovir. Human TMP kinase was successfully crystallized in a complex with phosphorylated (E)-thymidine-but-2-enyl phosphonate 9e and ADP. The bis-pivaloyloxymethyl (POM) esters of (E)-9d and (E)-9e were synthesized and shown to exert activity against herpes virus in vitro (IC50 = 3 渭M) and against varicella zoster virus in vitro (IC50 = 0.19 渭M), in contrast to the corresponding inactive (Z) derivatives. Thus, their antiviral activity correlates with their ability to act as thymidylate kinase substrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700