Silica Particle Stability and Settling in Protic Ionic Liquids
详细信息    查看全文
文摘
Silica particle suspensions of 10 wt % have been investigated in the protic ionic liquids (ILs) ethylammonium nitrate (EAN), ethanolammonium nitrate (EtAN), propylammonium nitrate (PAN), and dimethylethylammonium formate (DMEAF). Static and dynamic light scattering reveal that single particles coexist in dynamic equilibrium with flocculated networks at room temperature. These types of systems are classified as weakly flocculated and are quite rare. As weakly flocculated systems generally exist only within a narrow range of conditions, the effect of temperature was probed. When temperature is increased, the thermal motion of suspended particles increases, favoring dispersion, but in ILs suspensions, heating reduces the stabilizing effect of the interfacial structure of the IL. When subjected to a small increase in temperature, particle suspensions in ILs become unstable, indicated by the absence of a peak corresponding to single particles in the light scattering data. For EAN and DMEAF, further increasing temperatures above 40 掳C returns the systems to a weakly flocculated state in which thermal energy is sufficient to break particles away from aggregates. Weakly flocculated suspensions in EAN and EtAN settle more rapidly than predicted by the Stokes equation, as the particles spend a significant portion of time in large, rapidly settling flocs. Surprisingly, suspensions in PAN and DMEAF settle slower than predicted. Oscillatory rheology indicates that these suspensions are viscoelastic, due to a persistent, long-range structure in the suspension that slows settling. In aggregated systems, settling is very rapid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700