Modeling the Complete Catalytic Cycle of Aspartoacylase
详细信息    查看全文
文摘
The complete catalytic cycle of aspartoacylase (ASPA), a zinc-dependent enzyme responsible for cleavage of N-acetyl-l-aspartate, is characterized by the methods of molecular modeling. The reaction energy profile connecting the enzyme–substrate (ES) and the enzyme–product (EP) complexes is constructed by the quantum mechanics/molecular mechanics (QM/MM) method assisted by the molecular dynamics (MD) simulations with the QM/MM potentials. Starting from the crystal structure of ASPA complexed with the intermediate analogue, the minimum-energy geometry configurations and the corresponding transition states are located. The stages of substrate binding to the enzyme active site and release of the products are modeled by MD calculations with the replica-exchange umbrella sampling technique. It is shown that the first reaction steps, nucleophilic attack of a zinc-bound nucleophilic water molecule at the carbonyl carbon and the amide bond cleavage, are consistent with the glutamate-assisted mechanism hypothesized for the zinc-dependent hydrolases. The stages of formation of the products, acetate and l-aspartate, and regeneration of the enzyme are characterized for the first time. The constructed free energy diagram from the reactants to the products suggests that the enzyme regeneration, but not the nucleophilic attack of the catalytic water molecule, corresponds to the rate-determining stage of the full catalytic cycle of ASPA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700