Insights on Measuring and Reporting Heterogeneous Photocatalysis: Efficiency Definitions and Setup Examples
详细信息    查看全文
  • 作者:Muhammad Qureshi ; Kazuhiro Takanabe
  • 刊名:Chemistry of Materials
  • 出版年:2017
  • 出版时间:January 10, 2017
  • 年:2017
  • 卷:29
  • 期:1
  • 页码:158-167
  • 全文大小:499K
  • ISSN:1520-5002
文摘
Heterogeneous photocatalysis is a potentially competitive solution for the direct production of solar fuels. This research field has seen tremendous growth over the last five decades, and with such an exciting research topic, it has seen—and will continue to see—an increasing number of papers being published in a variety of journals. However, it is becoming increasingly difficult to compare the efficiencies of heterogeneous photocatalyst powders, because different researchers report their results in different ways. Efforts have been made to create standards for reporting data in this field, but there continues to be a discrepancy in published works. This article intends to clarify efficiency definitions, and clarify misconceptions as to why researchers should avoid reporting rates of evolution per gram, per surface area of catalyst, or as turnover frequencies (TOFs) alone, to be able to compare photocatalytic efficiency among different materials. By providing an example of a photoreactor for water splitting in the authors’ laboratory, the paper also intends to guide new researchers in the field. This article does not discuss how to improve photocatalysis but rather how to improve the reporting of photocatalysis to ensure reproducibility and effective benchmarking. Researchers should not only ensure that they have all the appropriate characterization and statistical data to support their claims but should also recognize that improperly reported data may lead to faulty benchmarking that prevents their results from being compared with those of other photocatalysts, inhibiting the progress of photocatalytic research.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700