Numerical Studies for the CO2 Capture Process in a Fluidized-Bed Absorber
详细信息    查看全文
文摘
The dry sorbent carbon dioxide capture technology is an efficient method to remove CO2 from flue gases. In this work, a multiphase hydrodynamic model with a sorption reaction of CO2 is developed and a two-dimensional computational fluid dynamics (CFD) simulation is carried out. The potassium carbonates are used as dry sorbents. A revised multi-scale interphase drag coefficient model is incorporated into the two-fluid model to consider the influence of clusters. The non-uniform distribution of the solid concentration and CO2 concentration is captured in the reactor. The core-annular regime can be found in the reactor. Predicted results are in good agreement with experimental results. The effects of operating conditions and parameters on the CO2 removal are evaluated. Simulated results indicate that reducing the inlet gas velocity can prolong the residence time of sorbents and enhance the overall CO2 removal. Improving the particle size and solid inventory will lead to an increase of CO2 removal to some extent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700