Reversible Modification of CdSe鈥揅dS/ZnS Quantum Dot Fluorescence by Surrounding Ca2+ Ions
详细信息    查看全文
文摘
It has been known for a long time that the fluorescence intensity of colloidal quantum dots (QDs) becomes modified when free ions are added to the QD solution. The consequences of removing free ions from the QD solution, however, have not been closely investigated. In this work we studied fluorescence from 3-mercaptopropionic acid (3-MPA) coated CdSe鈥揅dS/ZnS core鈥搈ultishell QDs when free Ca2+ ions were added to and subsequently removed from the QD solution. It was found that QD fluorescence intensity was reduced when Ca2+ ions were added to the QD solution, while the wavelength of the QD fluorescence peak remained unchanged. QD fluorescence recovered when the concentration of free Ca2+ ions in the QD solution was reduced by adding Ca2+ chelator (ethylene glycol tetraacetic acid, EGTA). It was further observed that the time of single QD fluorescence at on-state and QD fluorescence lifetimes were also reduced after adding Ca2+ and then recovered when EGTA was added. Theoretical study shows that a free Ca2+ ion can attach stably to the system of [QD + surface ligand], attract the photoexcited electron, and repel the photoexcited hole inside the QD core, leading to the reduction of the radiative recombination between the electron and hole, thereafter decreasing the QD fluorescence intensity, on-state time, and fluorescence lifetimes, as observed experimentally. To the best of our knowledge, this is a first study to show that the changes of QD optical properties are reversible under the influence of Ca2+ ions. We further estimated the equilibrium association constant pKa of our QDs with Ca2+, which is much larger than QDs with Mg2+, Na+, and K+, indicating the feasibility of developing a QD-based Ca2+ sensor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700