Mechanisms of the Deactivation of SAPO-34 Materials with Different Crystal Sizes Applied as MTO Catalysts
详细信息    查看全文
文摘
SAPO-34 materials with comparable Br酶nsted acid site density but different crystal sizes were applied as methanol-to-olefin (MTO) catalysts to elucidate the effect of the crystal size on their deactivation behaviors. 13C HPDEC MAS NMR, FTIR, and UV/vis spectroscopy were employed to monitor the formation and nature of organic deposits, and the densities of accessible Br酶nsted acid sites and active hydrocarbon-pool species were studied as a function of time-on-stream (TOS) by 1H MAS NMR spectroscopy. The above-mentioned spectroscopic methods gave a very complex picture of the deactivation mechanism consisting of a number of different steps. The most important of these steps is the formation of alkyl aromatics with large alkyl chains improving at first the olefin selectivity, but hindering the reactant diffusion after longer TOS. The hindered reactant diffusion leads to a surplus of retarded olefinic reaction products in the SAPO-34 pores accompanied by their oligomerization and the formation of polycyclic aromatics. Finally, these polycyclic aromatics are responsible for a total blocking of the SAPO-34 pores, making all catalytically active sites inside the pores nonaccessible for further reactants.

Keywords:

methanol-to-olefin conversion; SAPO-34; crystal size; deactivation mechanism; Br酶nsted acid sites; benzene-based carbenium ions; in situ spectroscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700