Conformational Transition and Energy Landscape of ErbB4 Activated by Neuregulin1尾: One Microsecond Molecular Dynamics Simulations
详细信息    查看全文
文摘
ErbB4, a receptor tyrosine kinase of the ErbB family, plays crucial roles in cell growth and differentiation, especially in the development of the heart and nervous system. Ligand binding to its extracellular region could modulate the activation process. To understand the mechanism of ErbB4 activation induced by ligand binding, we performed one microsecond molecular dynamics (MD) simulations on the ErbB4 extracellular region (ECR) with and without its endogenous ligand neuregulin1尾 (NRG1尾). The conformational transition of the ECR-ErbB4/NRG1尾 complex from a tethered inactive conformation to an extended active-like form has been observed, while such large and function-related conformational change has not been seen in the simulation on the ECR-ErbB4, suggesting that ligand binding is indeed the active inducing force for the conformational transition and further dimerization. On the basis of MD simulations and principal component analysis, we constructed a rough energy landscape for the conformational transition of ECR-ErbB4/NRG1尾 complex, suggesting that the conformational change from the inactive state to active-like state involves a stable conformation. The energy barrier for the tether opening was estimated as 2.7 kcal/mol, which is very close to the experimental value (1鈥? kcal/mol) reported for ErbB1. On the basis of the simulation results, an atomic mechanism for the ligand-induced activation of ErbB4 was postulated. The present MD simulations provide a new insight into the conformational changes underlying the activation of ErbB4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700