Fluorescence Amplification in Self-Assembled Organic Nanoparticles by Excitation Energy Migration and Transfer
详细信息    查看全文
文摘
The self-assembly of a low molecular weight organic chromophore occurs upon reprecipitation in water and yields 120 nm wide disk-like nanoparticles (NPs), as shown by fluorescence correlation spectroscopy (FCS) and atomic force microscopy (AFM). The NPs are able to incorporate perylene molecules previously present in water at nanomolar concentrations, thus switching ON and sensitizing their fluorescence. The doped NPs display a very high brightness as a result of their significant fluorescence quantum yield (up to 48%), the cumulated molecular absorbance, and the light-harvesting process. Fluorescence polarization spectroscopy also reveals that the efficiency of the donor-to-acceptor energy transfer process is amplified by a donor-to-donor excitation energy migration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700