Optimization of a New ZnO Nanorods Hydrothermal Synthesis Method for Solid State Dye Sensitized Solar Cells Applications
详细信息    查看全文
文摘
We report on the growth control of zinc oxide nanorods to point out the effect of the ZnO nanorods quality on the power conversion efficiency (PCE) of transparent conductive oxide (TCO)/ZnO nanorods/dye/spiro-OMeTAD/metal electrode photovoltaic devices. A promising PCE of 0.61% was measured for the best nanorods growth conditions. A careful control of all the growth parameters during the seeds layer deposition and the hydrothermal synthesis was necessary to reach such a high PCE for this kind of device. A regular nanorod layer with a flat upper surface was obtained for ethylenediamine to zinc acetate dihydrate molar ratio equal to 1.74 and a pH of 8.2. The growth was performed at 65 掳C for 2 h to avoid zinc oxide brushes deposition on the surface, arising from zinc hydroxyacetate decomposition during the hydrothermal treatment. The effect of ZnO nanorods length (ranging from 1 to 3 渭m) on solar cell efficiency was tested. Although the UV鈥搗is absorption increases when the nanorods length increases, the best photovoltaic parameters were measured for the shortest nanorods length studied (1 渭m).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700