Electronically Nonadiabatic Dynamics in Complex Molecular Systems: An Efficient and Accurate Semiclassical Solution
详细信息    查看全文
  • 作者:Guohua Tao
  • 刊名:The Journal of Physical Chemistry A
  • 出版年:2013
  • 出版时间:July 18, 2013
  • 年:2013
  • 卷:117
  • 期:28
  • 页码:5821-5825
  • 全文大小:314K
  • 年卷期:v.117,no.28(July 18, 2013)
  • ISSN:1520-5215
文摘
Chemical reaction dynamics is always a central theme in chemistry research. In many important chemical processes, reaction dynamics is electronically nonadiabatic, i.e., dynamics involves coupled multiple electronic states. We demonstrate in this paper that a semiclassical (SC) treatment based on an initial value representation methodology and a classical mapping formalism for the electronic degrees of freedom is now able to provide a rigorous and practical solution to electronically nonadiabatic dynamics in complex molecular systems. The key component of this treatment is to incorporate a correlated importance sampling protocol in nonadiabatic SC calculations, which results in a speedup factor of 100 or more in comparison with that using the standard sampling approach. This is illustrated by application to a two-state model coupled with up to 10 nuclear bath modes for a benchmark nonadiabatic excitation energy transfer problem. This work provides great opportunities for the effectively theoretical investigations on reaction mechanisms in complex molecular systems, in which electronically nonadiabatic dynamics plays an importance role.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700