Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods
详细信息    查看全文
文摘
We perform a theoretical investigation of individual and coupled gold nanorods as plasmonic nanosensors using the finite-difference time-domain method. Key features of single-nanorod sensors are discussed. The sensitivity distribution of an individual nanorod is anisotropic. The characteristic sensitivity decay length of a single-nanorod sensor is comparable to its diameter. Plasmonic sensing abilities are additive, so analyte-detection sensitivity is not affected by substrates or surface treatments; shifts caused by analytes are only determined by their positions relative to the sensor. Coupled nanorods enhance and concentrate plasmonic sensitivities, and the sensitivity within the gap can be over an order of magnitude higher than that at the nanorod cylinder. The sensitivities of coupled nanorods are only higher than those of individual nanorods when the analytes are anchored within the gaps between nanorods. The calculations show that a single biological molecule can be detected by optimizing nanostructure design and surface treatments to anchor analytes locally on high-sensitivity areas of the sensor surface. Our simulation results assist the design and optimization of plasmonic nanosensors, using single or coupled nanorods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700