Geometric, Magnetic, and Adsorption Properties of Cross-Linking Carbon Nanotubes: A Computational Study
详细信息    查看全文
文摘
Cross-linking carbon nanotubes (CLCNTs) composed of three axially confined single-walled carbon nanotubes (SWCNTs) of the (10,0) type are investigated by plane-wave density functional theory (DFT). Three CLCNT models, differing from each other by the structure of the contact regions of the three SWCNT constituents, are explored in terms of their geometric, electronic, and magnetic properties. Various magnetic phases, as obtained by combining finite SWCNTs in ferromagnetic (FM) or antiferromagnetic (AFM) coordination, are distinguished. The characteristics of these phases are shown to depend on the contact region geometry which plays an essential role in defining the order of their stabilities. For a selected CLCNT, adsorption of hydrogen atoms is discussed. The magnetic features of the CLCNTs turn out to hold the key for understanding the site dependence of the hydrogen atom adsorption energies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700