Surface Structure, Adsorption, and Thermal Desorption Behaviors of Methaneselenolate Monolayers on Au(111) from Dimethyl Diselenides
详细信息    查看全文
文摘
To understand the effect of headgroups (i.e., sulfur and selenium) on surface structure, adsorption states, and thermal desorption behaviors of self-assembled monolayers (SAMs) on Au(111), we examined methanethiolate (CH3鈥揝, MS) and metheneselenolate (CH3鈥揝e, MSe) monolayers formed from dimethyl disulfide (DMDS) and dimethyl diselenide (DMDSe) molecules by ambient vapor-phase deposition. Scanning tunneling microscopy imaging revealed that DMDS molecules on Au(111) after a 1 h deposition form MS monolayers containing a disordered phase and an ordered row phase with an inter-row spacing of 1.51 nm, whereas DMDSe molecules form long-range-ordered MSe monolayers with a (鈭? 脳 3鈭?)R30掳 structure. X-ray photoelectron spectroscopy measurements showed that MS or MSe monolayers chemisorbed on Au(111) were formed via S鈥揝 bond cleavage of DMDS or Se鈥揝e bond cleavage of DMDSe. On the other hand, we monitored three main desorption fragments for MS and MSe monolayers using TDS monomers (CH3S+, CH3Se+), parent mass species (CH3SH+, CH3SeH+), and dimers (CH3S鈥揝CH3+, CH3Se鈥揝eCH3+). Interestingly, we found that thermal desorption behaviors of MSe monolayers were markedly different from those of MS monolayers. All desorption peaks for MSe monolayers were observed at a higher temperature compared with MS monolayers, suggesting that the adsorption affinity of selenium atoms for the Au(111) surface is stronger than that of sulfur atoms. In addition, the desorption intensity of dimer fragments for MSe monolayers was much lower than for MS monolayers, indicating that selenolate SAMs on Au(111) did not undergo their dimerization efficiently during thermal heating compared with thiolate SAMs. Our results provide new insight into understanding the surface structure and thermal desorption behavior of MSe monolayers on Au(111) surface by comparing those of MS monolayers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700