Thermal Annealing Effects of Plasmonic Cu1.8S Nanocrystal Films and Their Photovoltaic Properties
详细信息    查看全文
文摘
Colloidal Cu2鈥?i>xS nanocrystals are potential abundant, low-cost, and environment-friendly candidates for photovoltaic and photothermal applications. The fabrication of high-quality nanocrystal films through a solution process is a key step toward the exploration of their applications. In this work, we fabricated high-quality Cu1.8S nanocrystal films, characterized their phase transformation under thermal annealing treatments, and investigated the evolution of the corresponding optical and electrical properties. It was demonstrated that the Cu1.8S nanocrystal films undergo a phase transformation from metastable rhombohedral phase to stable tetragonal phase (Cu2S) after annealing at a temperature higher than 240 掳C, which is much lower than that of the bulk materials (544 掳C). Along with the transformation, both optical and conductivity properties exhibit well-defined evolution from nonstoichiometric semiconductor to stoichiometric semiconductor, which can be interpreted through a combined electronic structure analysis and theoretical modeling. The correlations between the crystal structure, composition, optical and electrical properties enable us to gain further insights into the structure鈥損roperty relationship in Cu2鈥?i>xS nanocrystals. More importantly, a highly conductive Cu2鈥?i>xS nanocrystal film with electrical conductivity up to 6.7 S/cm was obtained, implying the potential to be used as conductive electrodes. We further integrated the annealed Cu2鈥?i>xS nanocrystal films into a photovoltaic device by adopting a FTO/TiO2/Cu2鈥?i>xS:CdS/MoO3/Au structure, and a preliminary power conversion efficiency of 0.24% was achieved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700