Excited-State Processes in First-Generation Phenyl-Cored Thiophene Dendrimers
详细信息    查看全文
文摘
First generation dendrimers with three oligothiophene arms (meta-arranged, 3G1-nS) and four arms (ortho- and para-arranged, 4G1-nS) connected to a central phenyl core were investigated spectroscopically in solution. In all dendrimers, on an ultrafast time scale (<10 ps), two 鈥渃ooling鈥?processes convert the initially generated, 鈥渉ot鈥?exciton into the geometrically relaxed, 鈥渃old鈥?exciton. A decrease in the triplet yield, particularly evident for the 4-arm dendrimers; intersystem crossing rate; and nonradiative triplet decay time with increasing number of bridging thiophene units n all meet with expectations from prior studies on linear oligothiophenes. A relatively fast internal conversion process (>0.6 ns<sup>鈭?sup>) is observed in both dendrimer series, possibly due to increased twisting about the phenyl core that reduces the triplet yields considerably with respect to oligothiophenes. An anomalous shifting of the triplet鈭抰riplet absorption spectra characterizes the 4G1-nS dendrimers as unique from the 3G1-nS series in terms of the hindrance of torsional motion and confinement of excited states enforced by the arrangement of dendrons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700