From Azo-Linked Polymers to Microporous Heteroatom-Doped Carbons: Tailored Chemical and Textural Properties for Gas Separation
详细信息    查看全文
文摘
Heteroatom-doped porous carbons with ultrahigh microporosity were prepared from a nitrogen-rich azo-linked polymer (ALP-6) as a precursor for gas separation applications. Direct carbonization and chemical activation of ALP-6 with ZnCl2 and KOH were successfully applied to obtain three different classes of porous carbons (ALPDCs). Synthetic processes were conducted at relatively mild temperatures (500–800 °C),which resulted in retention of appreciable levels of nitrogen content (4.7–14.3 wt %). Additionally, oxygen functionalities were found to be present in chemically activated samples. The resultant porous carbons feature a diverse range of textural properties with a predominant microporous nature in common. The highest CO2 uptake value of 5.2 mmol g–1 at 1 bar and 298 K in ALPDCK600 was originated from well-developed porosity and basic heteroatoms (N and O) on the pore walls. The highest heteroatom doping level (12 wt % nitrogen and 20 wt % oxygen) coupled with the high level of microporosity (84%) for ALPDCK500 led to notable CO2/N2 (62) and CO2/CH4 (11) selectivity values and a high CO2 uptake capacity (1.5 mmol g–1, at 0.15 bar) at 298 K. This study illustrates the effective use of a single-source precursor with robust nitrogen bonds in combination with diverse carbonization methods to tailor the chemical and textural properties of heteroatom-doped porous carbons for CO2 capture and separation applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700