Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery
详细信息    查看全文
文摘
To meet the requirements of both high energy and power density with cycle durability of modern EVs, we prepared a novel nanosulfur granular assembled film coated on the three-dimensional graphene sponge (3D-GS) composite as a high-performance active material for rechargeable lithium sulfur batteries. Instead of conventional graphene powder, three-dimensional rGO sponge (3D-rGO) is employed for the composite synthesis, resulting in a sulfur film directly in contact with the underlying graphene layer. This significantly improves the overall electrical conductivity, strategically addressing challenges of conventional composites of low sulfur utilization and dissolution of polysulfides. Additionally, the synthesis mechanism of 3D-GS is elucidated by XPS and DFT analyses, where replacement of hydroxyl group of 3D-rGO sponge by sulfur (S8) is found to be thermodynamically favorable. As expected, 3D-GS demonstrates outstanding discharge capacity of 1080 mAh g–1 at a 0.1C rate, and 86.2% capacity retention even after 500 cycles at a 1.0C rate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700