Laser Patterning of Optically Reconfigurable Transistor Channels in a Photochromic Diarylethene Layer
详细信息    查看全文
文摘
Optical switching organic field-effect transistors (OFETs) provide a new direction for optoelectronics based on photochromic molecules. However, the patterning of OFETs is difficult because conventional fabrication processes, including lithography and ion etching, inevitably cause severe damage to organic molecules. Here, we demonstrate laser patterning of one-dimensional (1D) channels on an OFET with a photochromic diarylethene (DAE) layer. The main findings are (i) a number of 1D channels can be repeatedly written and erased in the DAE layer by scanning focused ultraviolet and visible light laser beams alternately between the source and drain electrodes, (ii) the conductivity (or resistivity) of the 1D channel can be controlled by the illumination conditions, such as the laser power density and the scan speed, and (iii) it is possible to draw an analogue adder circuit by optically writing 1D channels so that a portion of the channels overlaps and to perform optical summing operations by local laser illumination of the respective channels. These findings will open new possibilities for realizing various optically reconfigurable, low-dimensional organic transistor circuits, which are not possible with conventional thin film OFETs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700