Effect of Unexpected CO2’s Phase Transition on the High-Pressure Differential Scanning Calorimetry Performance of Various Polymers
详细信息    查看全文
文摘
We used a high-pressure differential scanning calorimeter (HP-DSC) to study polymer plasticization by compressed gases at pressures of up to 30 MPa for polylactide (PLA), polycarbonate (PC), isotactic polypropylene (iPP), and polystyrene (PS). The pressure reached values twice as high as the previously published data. We found that the polymer/carbon dioxide (CO2) system’s heating curves have an unidentified endothermic peak above 5 MPa, which turns out to be from CO2’s phase transition. The HP-DSC could accurately determine the depression of the glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of various polymers at low pressures by simply starting at a higher temperature to avoid CO2’s phase transition; however, the increased plasticization effect of the dissolved CO2 lowered the Tg to the level of overlapping with CO2’s phase transition phenomena at elevated pressures, and therefore, the depressed Tg could not be measured above 6 MPa for PLA, PC, or PS. On the other hand, the Tc of iPP decreased with an increase in pressure, whereas Tm values of PLA and iPP decreased slightly with an increase in pressure and then remained almost unchanged above a certain pressure, which may indicate an increased hydrostatic pressure effect at elevated pressures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700