Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis
详细信息    查看全文
文摘
A solution method was developed to calculate the simultaneous phase and chemical equilibria in high-pressure methanol synthesis (P = 20 MPa, 463 < T < 553 K). Algorithms were developed that explicitly consider the existence of a condensed phase and include dew point calculations. A modification of the Soave鈥揜edlich鈥揔wong equation of state was used to correct for nonideal effects. Binary interaction coefficients were derived from literature data on high-pressure binary vapor鈥搇iquid equilibria. Predicted equilibrium conversions, with and without formation of a liquid phase, were successfully verified with new experimental results on high-pressure methanol synthesis obtained in a packed bed methanol synthesis reactor. Experimental data coincide very well with model predictions for the equilibrium conversion and gas composition. Remarkably, in some situations the model calculations appeared to predict condensation followed by a disappearing liquid phase (retrograde-like behavior) with increasing extent of the methanol synthesis reactions. Finally, at equilibrium only a gas phase remained present.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700