Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions
详细信息    查看全文
文摘
The oxidation and reduction of CuZn nanoparticles was studied using X-ray photoelectron spectroscopy (XPS) and in situ transmission electron microscopy (TEM). CuZn nanoparticles with a narrow size distribution were produced with a gas-aggregation cluster source in conjunction with mass-filtration. A direct comparison between the spatially averaged XPS information and the local TEM observations was thus made possible. Upon oxidation in O2, the as-deposited metal clusters transform into a polycrystalline cluster consisting of separate CuO and ZnO nanocrystals. Specifically, the CuO is observed to segregate to the cluster surface and partially cover the ZnO nanocrystals. Upon subsequent reduction in H2 the CuO converts into metallic Cu with ZnO nanocrystal covering their surface. In addition, a small amount of metallic Zn is detected suggesting that ZnO is reduced. It is likely that Zn species can migrate to the Cu surface forming a Cu鈥揨n surface alloy. The oxidation and reduction dynamics of the CuZn nanoparticles is of great importance to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boosts the catalytic activity. Thus, the present results demonstrate a new model approach that should be generally applicable to address metal鈥搒upport interactions in coprecipitated catalysts and multicomponent nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700