Strong Temperature Dependence in the Reactivity of H2 on RuO2(110)
详细信息    查看全文
文摘
Understanding the reactivity of H2 is of critical importance in controlling and optimizing many heterogeneous catalytic processes, particularly in cases where its adsorption on the catalyst surface is rate-limiting. In this work, we examine the temperature-dependent adsorption of H2/D2 on the clean RuO2(110) surface using the King and Wells molecular beam approach, temperature-programmed desorption (TPD), and scanning tunneling microscopy (STM). We show that the adsorption probability of H2/D2 on this surface is highly temperature-dependent, decreasing from ∼0.4 below 25 K to <0.01 at 300 K. Both STM and TPD reveal that adsorption (molecular or dissociative) is severely limited once the temperature exceeds the trailing edge temperature of the H2 TPD state (∼150 K). The presence of coadsorbed water or oxygen does not appear to alter this situation. Previous literature reports of extensive RuO2(110) surface hydroxylation from H2/D2 exposures at 300 K may instead be the result of background contamination brought about by chamber backfilling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700