Dramatic Reduction of IR Vibrational Cross Sections of Molecules Encapsulated in Carbon Nanotubes
详细信息    查看全文
文摘
Combined temperature-programmed desorption and IR studies suggest that absorption cross sections of IR-active vibrations of molecules 鈥渟trongly鈥?bound to single-wall carbon nanotubes (SWCNTs) are reduced at least by a factor of 10. Quantum chemical simulations show that IR intensities of endohedrally encapsulated molecules are dramatically reduced, and identify dielectric screening by highly polarizable SWCNT sidewalls as the origin of such 鈥渟creening鈥? The observed intensity reduction originates from a sizable cancellation of adsorbate dipole moments by mirror charges dynamically induced on the nanotube sidewalls. For exohedrally adsorbed molecules, the dielectric screening is found to be orientation-dependent with a smaller magnitude for adsorption in groove and interstitial sites. The presented results clearly demonstrate and quantify the screening effect of SWCNTs and unequivocally show that IR spectroscopy cannot be applied in a straightforward manner to the study of peapod systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700