Potential-Dependent Restructuring and Hysteresis in the Structural and Electronic Transformations of Pt/C, Au(Core)-Pt(Shell)/C, and Pd(Core)-Pt(Shell)/C Cathode Catalysts in Polymer Electrolyte Fuel
详细信息    查看全文
文摘
Potential-dependent transformations of surface structures, Pt oxidation states, and Pt鈥揙 bondings in Pt/C, Au(core)-Pt(shell)/C (denoted as Au@Pt/C), and Pd(core)-Pt(shell)/C (denoted as Pd@Pt/C) cathode catalysts in polymer electrolyte fuel cells (PEFCs) during the voltage-stepping processes were characterized by in situ (operando) X-ray absorption fine structure (XAFS). The active surface phase of the Au@Pt/C for oxygen reduction reaction (ORR) was suggested to be the Pt3Au alloy layer on Au core nanoparticles, while that of the Pd@Pt/C was the Pt atomic layer on Pd core nanoparticles. The surfaces of the Pt, Au@Pt and Pd@Pt nanoparticles were restructured and disordered at high potentials, which were induced by strong Pt鈥揙 bonds, resulting in hysteresis in the structural and electronic transformations in increasing and decreasing voltage operations. The potential-dependent restructuring, disordering, and hysteresis may be relevant to hindered Pt performance, Pt dissolution to the electrolyte, and degradation of the ORR activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700