Diffusive Nature of Xenon Anesthetic Changes Properties of a Lipid Bilayer: Molecular Dynamics Simulations
详细信息    查看全文
文摘
Effects of general anesthesia can be controllable by the ambient pressure. We perform molecular dynamics simulations for a 1-palmitoyl-2-oleoyl phosphatidylethanolamine lipid bilayer with or without xenon molecules by changing the pressure to elucidate the mechanism of the pressure reversal of general anesthesia. According to the diffusive nature of xenon molecules in the lipid bilayer, a decrease in the orientational order of the lipid tails, an increase in the area and volume per lipid molecule, and an increase in the diffusivity of lipid molecules are observed. We show that the properties of the lipid bilayer with xenon molecules at high pressure come close to those without xenon molecules at 0.1 MPa. Furthermore, we find that xenon molecules are concentrated in the middle of the lipid bilayer at high pressures by the pushing effect and that the diffusivity of xenon molecules is suppressed. These results suggest that the pressure reversal originates from a jamming and suppression of the diffusivity of xenon molecules in lipid bilayers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700