Structures and Spin States of Bis(tridentate)-Type Mononuclear and Triple Helicate Dinuclear Iron(II) Complexes of Imidazole-4-carbaldehyde azine
详细信息    查看全文
文摘
Mononuclear [Fe(H2LR)2]2+ and dinuclear [Fe2(H2LR)3]4+ (R = H, 2-Me, 5-Me) complexes containing the new imidazole-4-carbaldehyde azine ligand (H2LH) and its derivatives (H2L2-Me and H2L5-Me) prepared from the condensation reaction of 4-formylimidazole or 2-methyl- or 5-methyl-4-formylimidazole with hydrazine (2:1) were prepared, and their magnetostructural relationships were studied. In the mononuclear complexes, H2LR acts as an unsymmetrical tridentate ligand with two imidazole nitrogen atoms and one azine nitrogen atom, while in the dinuclear complexes, H2LR acts as a dinucleating ligand employing four nitrogen atoms to form a triple helicate. At room temperature, [Fe2(H2LH)3](ClO4)4 and [Fe2(H2L2-Me)3](ClO4)4 were in the high-spin (HS) and low-spin (LS) states, respectively. The results are in accordance with the ligand field strength of H2L2-Me with electron-donating methyl groups being stronger than H2LH, with the order of the ligand field strengths being H2L2-Me > H2LH. However, in the mononuclear [Fe(H2LH)2](ClO4)2 and [Fe(H2L2-Me)2](ClO4)2 complexes, a different order of ligand field strengths, H2LH > H2L2-Me, was observed because [Fe(H2LH)2](ClO4)2 was in the LS state while [Fe(H2L2-Me)2](ClO4)2 was in the HS state at room temperature. X-ray structural studies revealed that the interligand steric repulsion between a methyl group of an H2L2-Me ligand and the other ligand in [Fe(H2L2-Me)2](ClO4)2 is responsible for the observed change in the spin state. Two kinds of crystals, needles and blocks, were isolated for [Fe2(H2LH)3](BF4)4, and both exhibited a sharp spin transition, [LS−HS] ↔ [HS−HS]. The spin transition of the block crystals is more abrupt with a hysteresis, Tc↑ = 190 K and Tc↓ = 183 K with ΔT = 7 K.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700