Predicting Primary PM2.5 and PM0.1 Trace Composition for Epidemiological Studies in California
详细信息    查看全文
文摘
The University of California鈥擠avis_Primary (UCD_P) chemical transport model was developed and applied to compute the primary airborne particulate matter (PM) trace chemical concentrations from 900 sources in California through a simulation of atmospheric emissions, transport, dry deposition and wet deposition for a 7-year period (2000鈥?006) with results saved at daily time resolution. A comprehensive comparison between monthly average model results and available measurements yielded Pearson correlation coefficients (R) 鈮?.8 at 鈮? sites (out of a total of eight) for elemental carbon (EC) and nine trace elements: potassium, chromium, zinc, iron, titanium, arsenic, calcium, manganese, and strontium in the PM2.5 size fraction. Longer averaging time increased the overall R for PM2.5 EC from 0.89 (1 day) to 0.94 (1 month), and increased the number of species with strong correlations at individual sites. Predicted PM0.1 mass and PM0.1 EC exhibited excellent agreement with measurements (R = 0.92 and 0.94, respectively). The additional temporal and spatial information in the UCD_P model predictions produced population exposure estimates for PM2.5 and PM0.1that differed from traditional exposure estimates based on information at monitoring locations in California Metropolitan Statistical Areas, with a maximum divergence of 58% at Bakersfield. The UCD_P model has the potential to improve exposure estimates in epidemiology studies of PM trace chemical components and health.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700