Support Morphology-Dependent Catalytic Activity of Pd/CeO2 for Formaldehyde Oxidation
详细信息    查看全文
  • 作者:Hongyi Tan ; Jin Wang ; Shuzhen Yu ; Kebin Zhou
  • 刊名:Environmental Science & Technology
  • 出版年:2015
  • 出版时间:July 21, 2015
  • 年:2015
  • 卷:49
  • 期:14
  • 页码:8675-8682
  • 全文大小:482K
  • ISSN:1520-5851
文摘
To eliminate indoor formaldehyde (HCHO) pollution, Pd/CeO2 catalysts with different morphologies of ceria support were employed. The palladium nanoparticles loaded on {100}-faceted CeO2 nanocubes exhibited much higher activity than those loaded on {111}-faceted ceria nanooctahedrons and nanorods (enclosed by {100} and {111} facets). The HCHO could be fully converted into CO2 over the Pd/CeO2 nanocubes at a GHSV of 10鈥?00 h鈥? and a HCHO inlet concentration of 600 ppm at ambient temperature. The prepared catalysts were characterized by a series of techniques. The HRTEM, ICP-MS and XRD results confirmed the exposed facets of the ceria and the sizes (1鈥? nm) of the palladium nanoparticles with loading amounts close to 1%. According to the Pd 3d XPS and H2-TPR results, the status of the Pd-species was dependent on the morphologies of the supports. The {100} facets of ceria could maintain the metallic Pd species rather than the {111} facets, which promoted HCHO catalytic combustion. The Raman and O 1s XPS results revealed that the nanorods with more defect sites and oxygen vacancies were responsible for the easy oxidation of the Pd-species and low catalytic activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700