Effect of Fabrication and Operation Conditions on CO2 Separation Performance of PEO鈥揚A Block Copolymer Membranes
详细信息    查看全文
文摘
Poly(ethylene oxide)- (PEO-) based block copolymer membranes have great potential for use in CO2 separation because of their excellent selectivity and moderate permeability. Whereas numerous studies have focused on the permeation performance of such membranes, the influence of the microphase-separated structures on the gas transport is not well understood. This study examined the phase structure of PEO鈥損olyamide (PA) (commercial name, Pebax) block copolymer membranes by scanning probe microscopy (SPM) imaging and thermal analysis. The membranes with the irregular and more disordered phase-separated structure, such as Pebax-1074 membranes, that had longer PA chains and were made using a faster sol-to-gel transition process resulted in higher CO2 permeability than the membranes with the more ordered phase structure. The CO2 solubility coefficient profile as a function of pressure in the Pebax membranes with dual-mode sorption characteristics indicated the involvement of a glassy hard phase in CO2 transport, particularly at low pressure. The effects of temperature on gas transport and separation performance for a CO2/N2 gas mixture were also investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700