Importance of Disordered Polymer Segments to Microstructure-Dependent Photovoltaic Properties of Polymer鈥揊ullerene Bulk Heterojunction Solar Cells
详细信息    查看全文
文摘
While regulation of the nanoscale microstructure of the active layers in organic bulk heterojunction (BHJ) solar cells, particularly for conjugated polymer鈥揻ullerene blend systems, has been shown to be highly important when maximizing power conversion efficiency, little is known about the role of disordered polymer chains in the photovoltaic (PV) behaviors and electrochemical potential drops of polymer鈥揻ullerene interfaces. In this study, the microstructural-dependent PV properties of a series of poly(3-hexylthiophene) (P3HT):fullerene (i.e., [6,6]-phenyl-C61-butyric acid methyl ester, or PCBM) blending films with different compositions have been investigated using several experiments (i.e., absorption spectroscopy, Raman spectroscopy, X-ray diffraction, and atomic force microscopy) and theoretical methods (i.e., spectroscopic simulation and quantum mechanical calculations). A strong correlation exists between amorphous P3HT chain properties, characterized by degree of conjugation (Leff), and PV parameters. The impact of Leff of amorphous P3HT on exciton dissociation is addressed, thus providing an ideal structural model for organic BHJ solar cells. Although bigger P3HT and PCBM domains favor carrier transport, the control of disordered P3HT segments and PCBM contact is crucial to exciton dissociation, which can consequently optimize PV performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700