Enhancing Catalytic Performance of Palladium in Gold and Palladium Alloy Nanoparticles for Organic Synthesis Reactions through Visible Light Irradiation at Ambient Temperatures
详细信息    查看全文
文摘
The intrinsic catalytic activity of palladium (Pd) is significantly enhanced in gold (Au)-Pd alloy nanoparticles (NPs) under visible light irradiation at ambient temperatures. The alloy NPs strongly absorb light and efficiently enhance the conversion of several reactions, including Suzuki-Miyaura cross coupling, oxidative addition of benzylamine, selective oxidation of aromatic alcohols to corresponding aldehydes and ketones, and phenol oxidation. The Au/Pd molar ratio of the alloy NPs has an important impact on performance of the catalysts since it determines both the electronic heterogeneity and the distribution of Pd sites at the NP surface, with these two factors playing key roles in the catalytic activity. Irradiating with light produces an even more profound enhancement in the catalytic performance of the NPs. For example, the best conversion rate achieved thermally at 30 掳C for Suzuki-Miyaura cross coupling was 37% at a Au/Pd ratio of 1:1.86, while under light illumination the yield increased to 96% under the same conditions. The catalytic activity of the alloy NPs depends on the intensity and wavelength of incident light. Light absorption due to the Localized Surface Plasmon Resonance of gold nanocrystals plays an important role in enhancing catalyst performance. We believe that the conduction electrons of the NPs gain the light absorbed energy producing energetic electrons at the surface Pd sites, which enhances the sites鈥?intrinsic catalytic ability. These findings provide useful guidelines for designing efficient catalysts composed of alloys of a plasmonic metal and a catalytically active transition metal for various organic syntheses driven by sunlight.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700