Comparing Quasiparticle H2O Level Alignment on Anatase and Rutile TiO2
详细信息    查看全文
文摘
Knowledge of the alignment of molecular frontier levels in the ground state can be used to predict the photocatalytic activity of an interface. The position of the adsorbate鈥檚 highest occupied molecular orbital (HOMO) levels relative to the substrate鈥檚 valence band maximum (VBM) in the interface describes the favorability of photogenerated hole transfer from the VBM to the adsorbed molecule. This is a key quantity for assessing and comparing H2O photooxidation activities on two prototypical photocatalytic TiO2 surfaces: anatase (A)-TiO2(101) and rutile (R)-TiO2(110). Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0 calculations, we assess the relative photocatalytic activity of intact and dissociated H2O on coordinately unsaturated (Ticus) sites of idealized stoichiometric A-TiO2(101)/R-TiO2(110) and bridging O vacancies (Obrvac) of defective A-TiO2鈥?i>x(101)/R-TiO2鈥?i>x(110) surfaces (x = 1/4, 1/8) for various coverages. Such a many-body treatment is necessary to correctly describe the anisotropic screening of electron鈥揺lectron interactions at a photocatalytic interface and, hence, obtain accurate interfacial level alignments. The more favorable ground state HOMO level alignment for A-TiO2(101) may explain why the anatase polymorph shows higher photocatalytic activities than the rutile polymorph. Our results indicate that (1) hole trapping is more favored on A-TiO2(101) than R-TiO2(110) and (2) HO@Ticus is more photocatalytically active than intact H2O@Ticus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700