Flexible and Versatile Strategy for the Construction of Large Biochemical Pathways
详细信息    查看全文
  • 作者:Yongbo Yuan ; Erik Andersen ; Huimin Zhao
  • 刊名:ACS Synthetic Biology
  • 出版年:2016
  • 出版时间:January 15, 2016
  • 年:2016
  • 卷:5
  • 期:1
  • 页码:46-52
  • 全文大小:317K
  • ISSN:2161-5063
文摘
Synthetic pathways and circuits have been increasingly used for microbial production of fuels and chemicals. Here, we report a flexible and versatile DNA assembly strategy that allows rapid, modular, and reliable construction of biological pathways and circuits from basic genetic parts. This strategy combines the automation-friendly ligase cycling reaction (LCR) method and the high-fidelity in vivo yeast-based DNA assembly method, DNA assembler. Briefly, LCR is used to preassemble basic genetic parts into gene expression cassettes or to preassemble small parts into larger parts to reduce the number of parts, in which many basic genetic parts can be reused. With the help of specially designed unique linkers, all preassembled parts will then be directly assembled using DNA assembler to build the target constructs. As proof of concept, three plasmids with varying sizes of 13.4, 24, and 44 kb were rapidly constructed with fidelities of 100, 88, and 71%, respectively. The yeast strain harboring the constructed 44 kb plasmid was confirmed to be capable of utilizing xylose, cellobiose, and glucose to produce zeaxanthin. This strategy should be generally applicable to any custom-designed pathways, circuits, or plasmids.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700