Intermediate Partitioning Kinetic Isotope Effects for the NIH Shift of 4-Hydroxyphenylpyruvate Dioxygenase and the Hydroxylation Reaction of Hydroxymandelate Synthase Reveal Mechanistic Complexity
详细信息    查看全文
  • 作者:Dhara D. Shah ; John A. Conrad ; Graham R. Moran
  • 刊名:Biochemistry
  • 出版年:2013
  • 出版时间:September 3, 2013
  • 年:2013
  • 卷:52
  • 期:35
  • 页码:6097-6107
  • 全文大小:448K
  • 年卷期:v.52,no.35(September 3, 2013)
  • ISSN:1520-4995
文摘
4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are similar enzymes that catalyze complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. Both enzymes decarboxylate HPP and then hydroxylate the resulting hydroxyphenylacetate (HPA). The hydroxylation reaction catalyzed by HPPD displaces the aceto substituent of HPA in a 1,2-shift to form 2,5-dihydroxyphenylacetate (homogentisate, HG), whereas the hydroxylation reaction of HMS places a hydroxyl on the benzylic carbon forming 3鈥?hydroxyphenylacetate (S-hydroxymandelate, HMA) without ensuing chemistry. The wild-type form of HPPD and variants of both enzymes uncouple to form both native and non-native products. We have used intermediate partitioning to probe bifurcating steps that form these products by substituting deuteriums for protiums at the benzylic position of the HPP substrate. These substitutions result in altered ratios of products that can be used to calculate kinetic isotope effects (KIE) for the formation of a specific product. For HPPD, secondary normal KIEs indicate that cleavage of the bond in the displacement reaction prior to the shift occurs by a homolytic mechanism. NMR analysis of HG derived from HPPD reacting with enantiomerically pure R-3鈥?deutero-HPP indicates that no rotation about the bond to the radical occurs, suggesting that collapse of the biradical intermediate is rapid. The production of HMA was observed in HMS and HPPD variant reactions. HMS hydroxylates to form exclusively S-hydroxymandelate. When HMS is reacted with R-3鈥?deutero-HPP, the observed kinetic isotope effect represents geometry changes in the initial transition state for the nonabstracted proton. These data show evidence of sp3 hybridization in a HPPD variant and sp2 hybridization in HMS variants, suggesting that HMS stabilizes a more advanced transition state in order to catalyze H-atom abstraction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700