Imparting Chemical Stability in Nanoparticulate Silver via a Conjugated Polymer Casing Approach
详细信息    查看全文
文摘
Only limited information is available on the design and synthesis of functional materials for preventing corrosion of metal nanostructures. In the nanometer regime, even noble metals are subject to chemical attack. Here, the corrosion behavior of noble metal nanoparticles coated with a conjugated polymer nanolayer was explored for the first time. Specifically, electrochemical corrosion and sulfur tarnishing behaviors were examined for Ag-polypyrrole (PPy) core鈥搒hell nanoparticles using potentiodynamic polarization and spectrophotometric analysis, respectively. First, the Ag-PPy nanoparticles exhibited enhanced resistance to electrochemically induced corrosion compared to their exposed silver counterparts. Briefly, a neutral PPy shell provided the highest protection efficiency (75.5%), followed by sulfate ion- (61.3%) and dodecylbenzenesulfonate ion- (53.6%) doped PPy shells. However, the doping of the PPy shell with chloride ion induced an adverse effect (protection efficiency, 鈭?20%). Second, upon exposure to sulfide ions, the Ag-PPy nanoparticles preserved their morphology and colloidal stability while the bare silver analog underwent significant structural deformation. To further understand the function of the PPy shell as a protection layer for the silver core, the catalytic activity of the nanostructures was also evaluated. Using the reduction of 4-nitrophenol as a representative example of a catalytic reaction, the rate constant for that reduction using the PPy encased Ag nanoparticles was found to be 1.1 脳 10鈥? s鈥?, which is approximately 33% less than that determined for the parent silver. These results demonstrate that PPy can serve as both an electrical and chemical barrier for mitigating undesirable chemical degradation in corrosive environments, as well as provide a simple physical barrier to corrosive substances under appropriate conditions.

Keywords:

noble metals; conjugated polymers; corrosion; tarnishing; nanostructures

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700