Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties
详细信息    查看全文
文摘
Cellulose microfibrils physically bound together by soft hemicellulose chains form the scaffolding that makes plant cell walls strong. Inspired by this architecture, we designed biomimetic thermoreversible hydrogel networks based on reinforcing cellulose nanocrystals (CNC) and thermoresponsive methylcellulose (MC). Upon dissolving MC powder in CNC aqueous dispersions, viscoelastic dispersions were formed at 20 掳C, where the storage modulus (G鈥? is tunable from 1.0 to 75 Pa upon increasing the CNC concentration from 0 to 3.5 wt % with 1.0 wt % MC. By contrast, at 60 掳C a distinct gel state is obtained with G鈥? G鈥? G鈥? 蠅0, with an order of magnitude larger G鈥?values from 110 to 900 Pa upon increasing the CNC concentration from 0 to 3.5 wt % with constant 1.0 wt % MC, due to the physical cross-links between MC and CNCs. Therefore, simply mixing two sustainable components leads to the first all-cellulose thermoreversible and tunable nanocellulose-based hydrogels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700