A New Tetracyclic Lactam Building Block for Thick, Broad-Bandgap Photovoltaics
详细信息    查看全文
文摘
A new tetracyclic lactam building block for polymer semiconductors is reported that was designed to combine the many favorable properties that larger fused and/or amide-containing building blocks can induce, including improved solid-state packing, high charge carrier mobility, and improved charge separation. Copolymerization with thiophene resulted in a semicrystalline conjugated polymer, PTNT, with a broad bandgap of 2.2 eV. Grazing incidence wide-angle X-ray scattering of PTNT thin films revealed a strong tendency for face-on 蟺-stacking of the polymer backbone, which was retained in PTNT:fullerene blends. Corresponding solar cells featured a high open-circuit voltage of 0.9 V, a fill factor around 0.6, and a power conversion efficiency as high as 5% for >200 nm thick active layers, regardless of variations in blend stoichiometry and nanostructure. Moreover, efficiencies of >4% could be retained when thick active layers of 400 nm were employed. Overall, these values are the highest reported for a conjugated polymer with such a broad bandgap and are unprecedented in materials for tandem and particularly ternary blend photovoltaics. Hence, the newly developed tetracyclic lactam unit has significant potential as a conjugated building block in future organic electronic materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700