Optical Response of Fluorescent Molecules Studied by Synthetic Femtosecond Laser Pulses
详细信息    查看全文
文摘
The optical response of the fluorescent molecule IR144 in solution is probed by pairs of collinear pulses with intensity just above the linear dependence using two different pulse shaping methods. The first approach mimics a Michelson interferometer, while the second approach, known as multiple independent comb shaping (MICS), eliminates spectral interference. The comparison of interfering and non-interfering pulses reveals that linear interference between the pulses leads to the loss of experimental information at early delay times. In both cases, the delay between the pulses is controlled with attosecond resolution and the sample fluorescence and stimulated emission are monitored simultaneously. An out-of-phase behavior is observed for fluorescence and stimulated emission, with the fluorescence signal having a minimum at zero time delay. Experimental findings are modeled using a two-level system with relaxation that closely matches the phase difference between fluorescence and stimulated emission and the relative intensities of the measured effects.

Keywords:

pulse shaping; coherent control; decoherence; interferometry; electronic coherence

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700