Non-Equilibrium Dynamics of Vesicles and Micelles by Self-Assembly of Block Copolymers with Double Thermoresponsivity
详细信息    查看全文
文摘
We present a mesoscopic simulation study of doubly thermoresponsive self-assemblies, revealing previously unknown dynamic behavior and proving experimental hypotheses. By explicitly modeling internal energy as a degree of freedom of coarse-grained particles, we simulated the thermally induced self-assembly process triggered by the evolution of temperature over time and space. We found that both external and intrinsic factors are responsible for altering the assembly pathway of thermoresponsive micelles and hence determining the final aggregate morphology. We identified a frequency regime where thermoresponsive unilamellar vesicles can sustain repeated heating–cooling cycles in a thermal loading test, and we quantified the collapse probability and half-life of the vesicles under frequencies that cause vesicle destruction. Two molecular movement modes dominate, namely flip and slip, in thermoresponsive bilayer membranes during the inversion of composition. We demonstrated that doubly thermoresponsive micelles and vesicles, as potential drug delivery vehicles, exhibit distinct hydrodynamic behavior when flowing through capillaries whose temperature spans across the inversion temperature of the carriers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700