Empirical Modeling of Gravity Drainage in Fractured Porous Media
详细信息    查看全文
文摘
Gravity drainage is considered to be the main mechanism in primary oil production from naturally fractured reservoirs, but mathematical models to adequately predict the oil recovery and flux rate between the matrix and fracture network under gravity drainage are rarely described in the literature. To address this lacuna, gas鈭抩il contact movement and oil recovery rates in a thin glass-bead-packed simulator were measured, allowing for the capture of information about the matrix鈭抐racture fluid-transfer process. A two-dimensional mathematical model was developed to numerically simulate the process under the same conditions as the experiments, and then empirical models were proposed for oil production in such fractured systems because the final liquid recovery was found to be correlated to dimensionless groups, such as the Bond number. The empirical model approach was then extended to predict the matrix鈭抐racture liquid-transfer rate during the free-fall gravity drainage process. On the basis of experimental data and empirical correlations, the matrix鈭抐racture liquid flux rate appears to be proportional to the liquid level difference in the matrix and fracture. These correlations were tested against numerical simulation results and actual field data of oil production by free-fall gravity drainage. The empirical models have been judged to perform acceptably in the prediction of the oil production and fluid-transfer rate in the oil鈭抔as gravity drainage cases studied.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700