Long-Ranged Attractive Forces Induced by Adsorbed Dendrimers: Direct Force Measurements and Computer Simulations
详细信息    查看全文
文摘
Interaction forces between charged interfaces in the presence of oppositely charged dendrimers are studied by experiment and simulation. The experiments involve direct force measurements with an atomic force microscope (AFM) between two negatively charged colloidal particles in the presence of adsorbed, positively charged globular dendrimers. The simulations are carried out by treating the macroions explicitly, while the small salt ions are treated implicitly through the Debye−Hckel approximation. The system undergoes overcharging, and at the isoelectric point long-ranged attractive electrostatic forces are present. The range of the attraction is on the order of half the Debye length at high salt concentration, but it becomes smaller at low salt concentration. Away from the isoelectric point, repulsive electrostatic forces are observed due to diffuse layer overlap. A semiquantitative agreement between experiment and simulation is obtained, despite the fact that the simple theoretical model does not involve any adjustable parameters. This study provides for the first time detailed comparison between experimental and simulation data of interaction forces between colloidal particles in the presence of multivalent macroions and monovalent salt ions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700