A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics
详细信息    查看全文
文摘
Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the “human” time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700